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What is I/O complexity?

• Arithmetic complexity = # of
operations

• I/O cost (schedule-dependent) =
amount of data moved between
fast and slow memory

• I/O complexity = minimum cost
over all schedules
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Abstract
Researchers and practitioners have for long worked on im-
proving the computational complexity of algorithms, focus-
ing on reducing the number of operations needed to per-
form a computation. However the hardware trend nowadays
clearly shows a higher performance and energy cost for data
movements than computations: quality algorithms have to
minimize data movements as much as possible.

The theoretical operational complexity of an algorithm is
a function of the total number of operations that must be ex-
ecuted, regardless of the order in which they will actually be
executed. But theoretical data movement (or, I/O) complexity
is fundamentally different: one must consider all possible
legal schedules of the operations to determine the minimal
number of data movements achievable, a major theoretical
challenge. I/O complexity has been studied via complex man-
ual proofs, e.g., refined from Ω(𝑛3/√𝑆) for matrix-multiply
on a cache size 𝑆 by Hong & Kung to 2𝑛3/√𝑆 by Smith et al.
While asymptotic complexity may be sufficient to compare
I/O potential between broadly different algorithms, the accu-
racy of the reasoning depends on the tightness of these I/O
lower bounds. Precisely, exposing constants is essential to
enable precise comparison between different algorithms: for
example the 2𝑛3/√𝑆 lower bound allows to demonstrate the
optimality of panel-panel tiling for matrix-multiplication.
We present the first static analysis to automatically derive

non-asymptotic parametric expressions of datamovement lower
bounds with scaling constants, for arbitrary affine computa-
tions. Our approach is fully automatic, assisting algorithm
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designers to reason about I/O complexity and make educated
decisions about algorithmic alternatives.

CCS Concepts: • Theory of computation→ Design and
analysis of algorithms; • Software and its engineering
→ Automated static analysis.

Keywords: Data access complexity; I/O lower bounds; Static
analysis; Affine programs

1 Introduction
The performance impact of operations and data movement
latencies in current architectures can often be effectively
masked by using hardware-pipelined implementations. But
the volume of data movements required by even an idealized
implementation of an algorithm will impose fundamental
limits: any implementation of that algorithm will have its
performance and energy requirements bounded by this limit
[12, 18, 25, 26, 28, 29]. Providing algorithm designers with
tools to characterize this fundamental limit is crucial.

Memory movements can be efficiently tracked for a partic-
ular algorithm implementation, and it is standard practice for
performance debugging [1]: Hardware counters can be used
tomeasure cachemisses and data traffic. But two different im-
plementations of the same algorithm may have dramatically
different memory movement profiles: for example a care-
fully tiled implementation of matrix multiplication would
significantly reduce cache misses versus a naive, untiled one.
In general, determining whether an implementation is

sub-optimal or whether the fundamental nature of the algo-
rithm is the limiting factor for the observed cache miss count
is crucial. We propose an automatic system to answer this
question, potentially alleviating the need for the algorithm
designers to produce a concrete optimized implementation.
As we specifically target the production of non-asymptotic
I/O lower bounds, our system also makes it possible for per-
formance experts to reason about the optimality of their
implementations with respect to data movement.
Our fully implemented framework IOLB (for I/O Lower

Bounds) automatically derives parametric lower bounds with
1

LB

LB LB ≤ UB

IOOpt (This paper)

• Improvement of the lower bound
algorithm

• Automated upper bound derivation
(IOUB)
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I/O Upper Bounds

I/O complexity upper bound ⇔ Cost of a particular valid schedule

Untiled matrix multiplication

I/O cost: O(N3)

Tiled matrix multiplication

I/O cost: O( N3
√

S )

→ How to automatically compute I/O cost for a given schedule?
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Upper bound derivation

Input program

Input program

Tiling loop permutations

Tiling loop permutations

Parametrically tiled program

Parametrically tiled program

Symbolic I/O cost expressions

Symbolic I/O cost expressions

Tile sizes Bound as a function of S

Bound as a function of S

Pruning algorithm

For each permutation

Polyhedral calculus

Parameter values
Operations research Computer algebra

for(i = 0; i < Ni; i++)

for(j = 0; j < Nj; j++)

for(k = 0; k < Nk; k++)

C[i][j] += A[i][k] * B[k][j];

{(i, j, k), (i, k, j), (k, j, i)}

for(i1 = 0; i1 < Ni; i1+=Ti)

for(j1 = 0; j1 < Nj; j1+=Tj)

for(k = 0; k < Nk; k++)

for(i = i1; i < i1+Ti; i++)

for(j = j1; j < j1+Tj; j++)

C[i][j] += A[i][k] * B[k][j];

IO = Ni Nj Nk

(
1

Ti
+ 1

Tj
+ 1

Nk

)
Ti Tj + Ti + Tj ≤ S

UB = Ni Nj
( 2Nk√

S+1−1
+ 1

)
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Matrix multiplication I/O complexity

2NiNj(Nk−1)√
S ≤ IOmm ≤

2NiNjNk√
S+1−1
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In the paper: Analytical results on several convolutions (Yolo9000) and tensor
contractions (TCCG), with matching lower and upper bounds

6



Thank you!
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