
IOOpt: Automatic Derivation of I/O Complexity Bounds for
Affine Programs

Auguste Olivry Guillaume Iooss Nicolas Tollenaere
Atanas Rountev P. Sadayappan Fabrice Rastello
June 2021

1

What is I/O complexity?

• Arithmetic complexity = # of
operations

• I/O cost (schedule-dependent) =
amount of data moved between
fast and slow memory

• I/O complexity = minimum cost
over all schedules

CPU
Fast memory

capacity S

Fast memory
capacity S

Slow memory
unbounded

capacity

Slow memory
unbounded

capacity

2

What is I/O complexity?

• Arithmetic complexity = # of
operations

• I/O cost (schedule-dependent) =
amount of data moved between
fast and slow memory

• I/O complexity = minimum cost
over all schedules

CPU
Fast memory

capacity S
Fast memory

capacity S

Slow memory
unbounded

capacity

Slow memory
unbounded

capacity

2

What is I/O complexity?

• Arithmetic complexity = # of
operations

• I/O cost (schedule-dependent) =
amount of data moved between
fast and slow memory

• I/O complexity = minimum cost
over all schedules

CPU
Fast memory

capacity S

Fast memory
capacity S

Slow memory
unbounded

capacity

Slow memory
unbounded

capacity

2

What is I/O complexity?

• Arithmetic complexity = # of
operations

• I/O cost (schedule-dependent) =
amount of data moved between
fast and slow memory

• I/O complexity = minimum cost
over all schedules

CPU
Fast memory

capacity S

Fast memory
capacity S

Slow memory
unbounded

capacity

Slow memory
unbounded

capacity

2

What is I/O complexity?

• Arithmetic complexity = # of
operations

• I/O cost (schedule-dependent) =
amount of data moved between
fast and slow memory

• I/O complexity = minimum cost
over all schedules

CPU
Fast memory

capacity S

Fast memory
capacity S

Slow memory
unbounded

capacity

Slow memory
unbounded

capacity

2

Lower and Upper Bounds

IO≤

IOLB (PLDI ’20)
Automated lower

bound computation

Automated Derivation of Parametric
DataMovement Lower Bounds for Affine Programs∗

Auguste Olivry
Univ. Grenoble Alpes,

CNRS, Inria, Grenoble INP, LIG
38000 Grenoble, France

Julien Langou
University of Colorado Denver

Denver, CO, USA

Louis-Noël Pouchet
Colorado State University
Fort Collins, CO, USA

P. Sadayappan
University of Utah

Salt Lake City, UT, USA

Fabrice Rastello
Univ. Grenoble Alpes,

Inria, CNRS, Grenoble INP, LIG
38000 Grenoble, France

Abstract
Researchers and practitioners have for long worked on im-
proving the computational complexity of algorithms, focus-
ing on reducing the number of operations needed to per-
form a computation. However the hardware trend nowadays
clearly shows a higher performance and energy cost for data
movements than computations: quality algorithms have to
minimize data movements as much as possible.

The theoretical operational complexity of an algorithm is
a function of the total number of operations that must be ex-
ecuted, regardless of the order in which they will actually be
executed. But theoretical data movement (or, I/O) complexity
is fundamentally different: one must consider all possible
legal schedules of the operations to determine the minimal
number of data movements achievable, a major theoretical
challenge. I/O complexity has been studied via complex man-
ual proofs, e.g., refined from Ω(𝑛3/√𝑆) for matrix-multiply
on a cache size 𝑆 by Hong & Kung to 2𝑛3/√𝑆 by Smith et al.
While asymptotic complexity may be sufficient to compare
I/O potential between broadly different algorithms, the accu-
racy of the reasoning depends on the tightness of these I/O
lower bounds. Precisely, exposing constants is essential to
enable precise comparison between different algorithms: for
example the 2𝑛3/√𝑆 lower bound allows to demonstrate the
optimality of panel-panel tiling for matrix-multiplication.
We present the first static analysis to automatically derive

non-asymptotic parametric expressions of datamovement lower
bounds with scaling constants, for arbitrary affine computa-
tions. Our approach is fully automatic, assisting algorithm

∗This work was supported in part by the U.S. National Science Foundation
awards 1645514, 1645599, 1750399 and 1816793.

PLDI ’20, June 15–20, 2020, London, UK
2020. This is the author’s version of the work. It is posted here for your
personal use. Not for redistribution. The definitive Version of Record was
published in Proceedings of the 41st ACM SIGPLAN International Conference
on Programming Language Design and Implementation (PLDI ’20), June 15–20,
2020, London, UK , https://doi.org/10.1145/3385412.3385989.

designers to reason about I/O complexity and make educated
decisions about algorithmic alternatives.

CCS Concepts: • Theory of computation→ Design and
analysis of algorithms; • Software and its engineering
→ Automated static analysis.

Keywords: Data access complexity; I/O lower bounds; Static
analysis; Affine programs

1 Introduction
The performance impact of operations and data movement
latencies in current architectures can often be effectively
masked by using hardware-pipelined implementations. But
the volume of data movements required by even an idealized
implementation of an algorithm will impose fundamental
limits: any implementation of that algorithm will have its
performance and energy requirements bounded by this limit
[12, 18, 25, 26, 28, 29]. Providing algorithm designers with
tools to characterize this fundamental limit is crucial.

Memory movements can be efficiently tracked for a partic-
ular algorithm implementation, and it is standard practice for
performance debugging [1]: Hardware counters can be used
tomeasure cachemisses and data traffic. But two different im-
plementations of the same algorithm may have dramatically
different memory movement profiles: for example a care-
fully tiled implementation of matrix multiplication would
significantly reduce cache misses versus a naive, untiled one.
In general, determining whether an implementation is

sub-optimal or whether the fundamental nature of the algo-
rithm is the limiting factor for the observed cache miss count
is crucial. We propose an automatic system to answer this
question, potentially alleviating the need for the algorithm
designers to produce a concrete optimized implementation.
As we specifically target the production of non-asymptotic
I/O lower bounds, our system also makes it possible for per-
formance experts to reason about the optimality of their
implementations with respect to data movement.
Our fully implemented framework IOLB (for I/O Lower

Bounds) automatically derives parametric lower bounds with
1

LB

LB LB ≤ UB

IOOpt (This paper)

• Improvement of the lower bound
algorithm

• Automated upper bound derivation
(IOUB)

3

Lower and Upper Bounds

IO≤

IOLB (PLDI ’20)
Automated lower

bound computation

Automated Derivation of Parametric
DataMovement Lower Bounds for Affine Programs∗

Auguste Olivry
Univ. Grenoble Alpes,

CNRS, Inria, Grenoble INP, LIG
38000 Grenoble, France

Julien Langou
University of Colorado Denver

Denver, CO, USA

Louis-Noël Pouchet
Colorado State University
Fort Collins, CO, USA

P. Sadayappan
University of Utah

Salt Lake City, UT, USA

Fabrice Rastello
Univ. Grenoble Alpes,

Inria, CNRS, Grenoble INP, LIG
38000 Grenoble, France

Abstract
Researchers and practitioners have for long worked on im-
proving the computational complexity of algorithms, focus-
ing on reducing the number of operations needed to per-
form a computation. However the hardware trend nowadays
clearly shows a higher performance and energy cost for data
movements than computations: quality algorithms have to
minimize data movements as much as possible.

The theoretical operational complexity of an algorithm is
a function of the total number of operations that must be ex-
ecuted, regardless of the order in which they will actually be
executed. But theoretical data movement (or, I/O) complexity
is fundamentally different: one must consider all possible
legal schedules of the operations to determine the minimal
number of data movements achievable, a major theoretical
challenge. I/O complexity has been studied via complex man-
ual proofs, e.g., refined from Ω(𝑛3/√𝑆) for matrix-multiply
on a cache size 𝑆 by Hong & Kung to 2𝑛3/√𝑆 by Smith et al.
While asymptotic complexity may be sufficient to compare
I/O potential between broadly different algorithms, the accu-
racy of the reasoning depends on the tightness of these I/O
lower bounds. Precisely, exposing constants is essential to
enable precise comparison between different algorithms: for
example the 2𝑛3/√𝑆 lower bound allows to demonstrate the
optimality of panel-panel tiling for matrix-multiplication.
We present the first static analysis to automatically derive

non-asymptotic parametric expressions of datamovement lower
bounds with scaling constants, for arbitrary affine computa-
tions. Our approach is fully automatic, assisting algorithm

∗This work was supported in part by the U.S. National Science Foundation
awards 1645514, 1645599, 1750399 and 1816793.

PLDI ’20, June 15–20, 2020, London, UK
2020. This is the author’s version of the work. It is posted here for your
personal use. Not for redistribution. The definitive Version of Record was
published in Proceedings of the 41st ACM SIGPLAN International Conference
on Programming Language Design and Implementation (PLDI ’20), June 15–20,
2020, London, UK , https://doi.org/10.1145/3385412.3385989.

designers to reason about I/O complexity and make educated
decisions about algorithmic alternatives.

CCS Concepts: • Theory of computation→ Design and
analysis of algorithms; • Software and its engineering
→ Automated static analysis.

Keywords: Data access complexity; I/O lower bounds; Static
analysis; Affine programs

1 Introduction
The performance impact of operations and data movement
latencies in current architectures can often be effectively
masked by using hardware-pipelined implementations. But
the volume of data movements required by even an idealized
implementation of an algorithm will impose fundamental
limits: any implementation of that algorithm will have its
performance and energy requirements bounded by this limit
[12, 18, 25, 26, 28, 29]. Providing algorithm designers with
tools to characterize this fundamental limit is crucial.

Memory movements can be efficiently tracked for a partic-
ular algorithm implementation, and it is standard practice for
performance debugging [1]: Hardware counters can be used
tomeasure cachemisses and data traffic. But two different im-
plementations of the same algorithm may have dramatically
different memory movement profiles: for example a care-
fully tiled implementation of matrix multiplication would
significantly reduce cache misses versus a naive, untiled one.
In general, determining whether an implementation is

sub-optimal or whether the fundamental nature of the algo-
rithm is the limiting factor for the observed cache miss count
is crucial. We propose an automatic system to answer this
question, potentially alleviating the need for the algorithm
designers to produce a concrete optimized implementation.
As we specifically target the production of non-asymptotic
I/O lower bounds, our system also makes it possible for per-
formance experts to reason about the optimality of their
implementations with respect to data movement.
Our fully implemented framework IOLB (for I/O Lower

Bounds) automatically derives parametric lower bounds with
1

LB

LB LB ≤ UB

IOOpt (This paper)

• Improvement of the lower bound
algorithm

• Automated upper bound derivation
(IOUB)

3

I/O Upper Bounds

I/O complexity upper bound ⇔ Cost of a particular valid schedule

Untiled matrix multiplication

I/O cost: O(N3)

Tiled matrix multiplication

I/O cost: O(N3
√

S)

→ How to automatically compute I/O cost for a given schedule?

4

Upper bound derivation

Input program

Input program

Tiling loop permutations

Tiling loop permutations

Parametrically tiled program

Parametrically tiled program

Symbolic I/O cost expressions

Symbolic I/O cost expressions

Tile sizes Bound as a function of S

Bound as a function of S

Pruning algorithm

For each permutation

Polyhedral calculus

Parameter values
Operations research Computer algebra

for(i = 0; i < Ni; i++)

for(j = 0; j < Nj; j++)

for(k = 0; k < Nk; k++)

C[i][j] += A[i][k] * B[k][j];

{(i, j, k), (i, k, j), (k, j, i)}

for(i1 = 0; i1 < Ni; i1+=Ti)

for(j1 = 0; j1 < Nj; j1+=Tj)

for(k = 0; k < Nk; k++)

for(i = i1; i < i1+Ti; i++)

for(j = j1; j < j1+Tj; j++)

C[i][j] += A[i][k] * B[k][j];

IO = Ni Nj Nk

(
1

Ti
+ 1

Tj
+ 1

Nk

)
Ti Tj + Ti + Tj ≤ S

UB = Ni Nj
(2Nk√

S+1−1
+ 1

)

5

Upper bound derivation

Input programInput program

Tiling loop permutations

Tiling loop permutations

Parametrically tiled program

Parametrically tiled program

Symbolic I/O cost expressions

Symbolic I/O cost expressions

Tile sizes Bound as a function of S

Bound as a function of S

Pruning algorithm

For each permutation

Polyhedral calculus

Parameter values
Operations research Computer algebra

for(i = 0; i < Ni; i++)

for(j = 0; j < Nj; j++)

for(k = 0; k < Nk; k++)

C[i][j] += A[i][k] * B[k][j];

{(i, j, k), (i, k, j), (k, j, i)}

for(i1 = 0; i1 < Ni; i1+=Ti)

for(j1 = 0; j1 < Nj; j1+=Tj)

for(k = 0; k < Nk; k++)

for(i = i1; i < i1+Ti; i++)

for(j = j1; j < j1+Tj; j++)

C[i][j] += A[i][k] * B[k][j];

IO = Ni Nj Nk

(
1

Ti
+ 1

Tj
+ 1

Nk

)
Ti Tj + Ti + Tj ≤ S

UB = Ni Nj
(2Nk√

S+1−1
+ 1

)

5

Upper bound derivation

Input program

Input program

Tiling loop permutationsTiling loop permutations

Parametrically tiled program

Parametrically tiled program

Symbolic I/O cost expressions

Symbolic I/O cost expressions

Tile sizes Bound as a function of S

Bound as a function of S

Pruning algorithm

For each permutation

Polyhedral calculus

Parameter values
Operations research Computer algebra

for(i = 0; i < Ni; i++)

for(j = 0; j < Nj; j++)

for(k = 0; k < Nk; k++)

C[i][j] += A[i][k] * B[k][j];

{(i, j, k), (i, k, j), (k, j, i)}

for(i1 = 0; i1 < Ni; i1+=Ti)

for(j1 = 0; j1 < Nj; j1+=Tj)

for(k = 0; k < Nk; k++)

for(i = i1; i < i1+Ti; i++)

for(j = j1; j < j1+Tj; j++)

C[i][j] += A[i][k] * B[k][j];

IO = Ni Nj Nk

(
1

Ti
+ 1

Tj
+ 1

Nk

)
Ti Tj + Ti + Tj ≤ S

UB = Ni Nj
(2Nk√

S+1−1
+ 1

)

5

Upper bound derivation

Input program

Input program

Tiling loop permutations

Tiling loop permutations

Parametrically tiled programParametrically tiled program

Symbolic I/O cost expressions

Symbolic I/O cost expressions

Tile sizes Bound as a function of S

Bound as a function of S

Pruning algorithm

For each permutation

Polyhedral calculus

Parameter values
Operations research Computer algebra

for(i = 0; i < Ni; i++)

for(j = 0; j < Nj; j++)

for(k = 0; k < Nk; k++)

C[i][j] += A[i][k] * B[k][j];

{(i, j, k), (i, k, j), (k, j, i)}

for(i1 = 0; i1 < Ni; i1+=Ti)

for(j1 = 0; j1 < Nj; j1+=Tj)

for(k = 0; k < Nk; k++)

for(i = i1; i < i1+Ti; i++)

for(j = j1; j < j1+Tj; j++)

C[i][j] += A[i][k] * B[k][j];

IO = Ni Nj Nk

(
1

Ti
+ 1

Tj
+ 1

Nk

)
Ti Tj + Ti + Tj ≤ S

UB = Ni Nj
(2Nk√

S+1−1
+ 1

)

5

Upper bound derivation

Input program

Input program

Tiling loop permutations

Tiling loop permutations

Parametrically tiled program

Parametrically tiled program

Symbolic I/O cost expressionsSymbolic I/O cost expressions

Tile sizes Bound as a function of S

Bound as a function of S

Pruning algorithm

For each permutation

Polyhedral calculus

Parameter values
Operations research Computer algebra

for(i = 0; i < Ni; i++)

for(j = 0; j < Nj; j++)

for(k = 0; k < Nk; k++)

C[i][j] += A[i][k] * B[k][j];

{(i, j, k), (i, k, j), (k, j, i)}

for(i1 = 0; i1 < Ni; i1+=Ti)

for(j1 = 0; j1 < Nj; j1+=Tj)

for(k = 0; k < Nk; k++)

for(i = i1; i < i1+Ti; i++)

for(j = j1; j < j1+Tj; j++)

C[i][j] += A[i][k] * B[k][j];

IO = Ni Nj Nk

(
1

Ti
+ 1

Tj
+ 1

Nk

)
Ti Tj + Ti + Tj ≤ S

UB = Ni Nj
(2Nk√

S+1−1
+ 1

)

5

Upper bound derivation

Input program

Input program

Tiling loop permutations

Tiling loop permutations

Parametrically tiled program

Parametrically tiled program

Symbolic I/O cost expressions

Symbolic I/O cost expressions

Tile sizes Bound as a function of SBound as a function of S

Pruning algorithm

For each permutation

Polyhedral calculus

Parameter values
Operations research Computer algebra

for(i = 0; i < Ni; i++)

for(j = 0; j < Nj; j++)

for(k = 0; k < Nk; k++)

C[i][j] += A[i][k] * B[k][j];

{(i, j, k), (i, k, j), (k, j, i)}

for(i1 = 0; i1 < Ni; i1+=Ti)

for(j1 = 0; j1 < Nj; j1+=Tj)

for(k = 0; k < Nk; k++)

for(i = i1; i < i1+Ti; i++)

for(j = j1; j < j1+Tj; j++)

C[i][j] += A[i][k] * B[k][j];

IO = Ni Nj Nk

(
1

Ti
+ 1

Tj
+ 1

Nk

)
Ti Tj + Ti + Tj ≤ S

UB = Ni Nj
(2Nk√

S+1−1
+ 1

)
5

Matrix multiplication I/O complexity

2NiNj(Nk−1)√
S ≤ IOmm ≤

2NiNjNk√
S+1−1

14 16 18 20 22
log2(S)

0.0

0.5

1.0

I/O

1e8 abcde-efbad-cf

14 16 18 20 22
log2(S)

0

2I/O

1e7 abcd-dbea-ec

14 16 18 20 22
log2(S)

0

2

4

I/O

1e8 abc-bda-dc

14 16 18 20 22
log2(S)

0

2

4

I/O

1e7 abcdef-dega-gfbc

14 16 18 20 22
log2(S)

0.0

0.5

1.0

I/O

1e8 abc-adec-ebd

14 16 18 20 22
log2(S)

0

2

4

I/O

1e8 ab-cad-dcb

14 16 18 20 22
log2(S)

0.0

2.5

5.0

I/O
1e9 ab-ac-cb

14 16 18 20 22
log2(S)

0

5

I/O

1e9 abcd-aebf-fdec

In the paper: Analytical results on several convolutions (Yolo9000) and tensor
contractions (TCCG), with matching lower and upper bounds

6

Thank you!

7

